Early effects of 1,25 dihydroxyvitamin D on bone calcium in vitamin D-deficient rats.

نویسنده

  • P J Marie
چکیده

The early effects of 1,25 dihydroxyvitamin D [1,25 (OH)2D] on calcium transfer in and out of the skeleton were studied in rats to determine whether mobilized bone calcium was reutilized during new bone mineralization. Vitamin-D deficient rats were labeled with 45calcium 10 to 14 days prior to treatment (experiment 1) or at the same time (experiment 2) they were injected with 0.125 microgram of 1,25 (OH)2D. Blood and bone samples were collected from 30 min to 24 h following 1,25 (OH)2D injection. Stable and radioactive calcium were determined in serum, and caudal vertebrae were subjected to histomorphometric and autoradiographic studies. In the rats of experiment 1, serum specific radioactivity peaked from 1 to 3 h after 1,25 (OH)2D injection, while there was no change in control rats receiving the vehicle alone. In the untreated vitamin D-deficient rats of experiment 2, the rate of 45calcium loss in serum was higher than normal but returned to normal after 1,25 (OH)2D injection. Serum calcium and osteoclast number remained initially unchanged, suggesting that 1,25 (OH)2D acted by increasing the efflux of calcium from bone and/or by stimulating the activity of existing osteoclasts. The rapid mobilization of 45calcium, accompanied by an increase in the extent of actively mineralizing surfaces, was followed by an increase in the extent of endosteal surface with osteoblasts and by specific incorporation of radioactive calcium at sites of new bone calcification. This study indicates that in vitamin D-deficient rats, the initial promotion of bone mineralization by 1,25 (OH)2D resulted in part from the rapid mobilization of calcium from old mineralized bone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Vitamin D in Neonates and Young Infants

Vitamin D is important for the development, growth, and mineralization of the skeletal in neonates and children. Vitamin D is essential for intestinal absorption of calcium. Vitamin D is metabolized to 25-hydroxyvitamin D and then to 1,25-dihydroxyvitamin D. Pregnant women in developed countries often have insufficient serum concentrations of 25-hydroxyvitamin D and a supplementation of vitamin...

متن کامل

Britain Stimulation of 1 , 25 - dihydroxyvitamin D 3 production by 1 , 25 - dihydroxyvitamin D 3 in the hypocalcaemic rat

Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 a-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with incr...

متن کامل

Effects of Oral Isotretinoin on Serum Vitamin D Metabolites and Other Biochemical Markers of Bone Turnover and Calcium Homeostasis in Severe Acne

Background: Few studies have investigated on vitamin D metabolites Serum levels, and calcium homeostasis in humans receiving retinoids, despite a substantial amount of literature concerning retinoid-induced osteoporosis in animals. We prospectively measured vitamin D metabolites serum levels and calcium homeostasis and radiographic bone changes in short course treatment with oral isotreti...

متن کامل

Imbalanced Diet Deficient in Calcium and Vitamin D- Induced Juvenile Osteopenia in Rats; the Potential Therapeutic Effect of Egyptian Moghat Roots Water Extract (Glossostemon bruguieri)

This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them fr...

متن کامل

Imbalanced Diet Deficient in Calcium and Vitamin D- Induced Juvenile Osteopenia in Rats; the Potential Therapeutic Effect of Egyptian Moghat Roots Water Extract (Glossostemon bruguieri)

This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reproduction, nutrition, developpement

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 1983